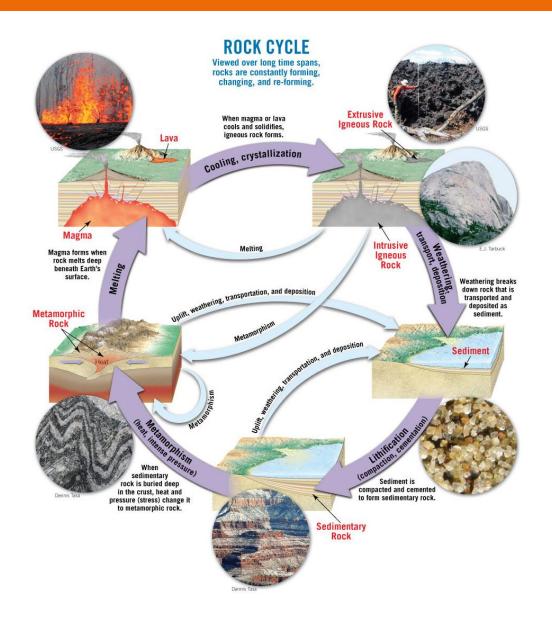

Chapter 2 Lecture

Foundations of Earth Science

Eighth Edition

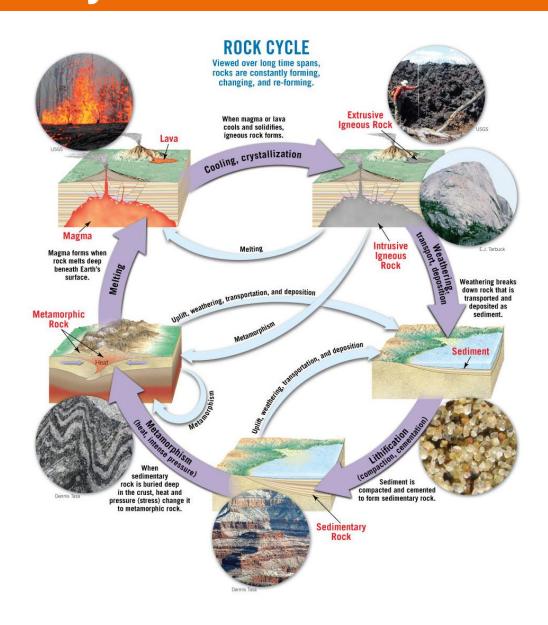
Rocks: Materials of the Solid Earth


Natalie Bursztyn
Utah State University

Focus Question 2.1

Sketch, label, and explain the rock cycle.

Focus Question 2.1


Earth as a System: The Rock Cycle

- The rock cycle describes the interactions between the components of the Earth system
 - Origin of igneous, sedimentary, and metamorphic rocks and how they are connected
- Any rock can be transformed into any other rock type under the right conditions

- The rock cycle begins with magma
 - Forms from melting in Earth's crust and upper mantle
 - Less dense magma rises toward the surface
 - Erupts at surface as lava or cools within crust
 - Cooling is called crystallization or solidification
- Igneous rocks are crystallized from
 - Magma (within the crust)
 - Or lava (at Earth's surface)

- Igneous rocks exposed at Earth's surface undergo weathering
 - Atmosphere decomposes rock
 - Generates loose material or dissolves it
- Loose material is called sediment
 - Transported by gravity, running water, glaciers, wind, waves, etc.
 - Most sediment is transported to the ocean, but some is deposited in other environments

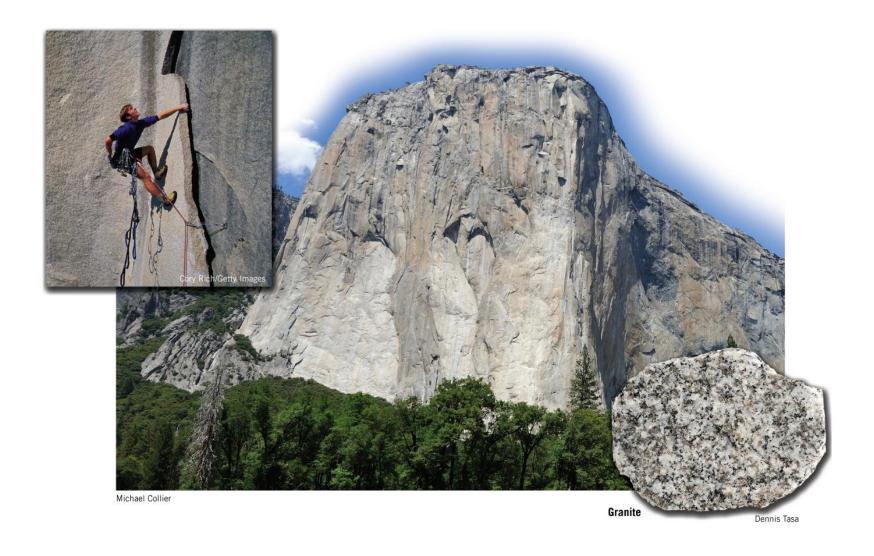
- Deposited sediment undergoes lithification
 - "Conversion into rock" by
 - Compaction
 - Cementation
- Deformed by great heat and pressure if deeply buried or incorporated into a mountain chain
 - Metamorphism
- Eventually enough heat will melt the rock and generate magma

- Rocks are not stable unchanging masses over geologic time scales
 - Rock cycle happens over millions or billions of years
- Different stages of the rock cycle are occurring today all over Earth's surface
 - New igneous rocks are forming in Hawaii
 - The Colorado Rockies are eroding and material is being carried to the Gulf of Mexico

Alternative Paths

- Rocks do not always go through the rock cycle from igneous to sedimentary to metamorphic
 - Igneous rocks may remain deeply buried and then become metamorphosed
 - Sedimentary and metamorphic rocks may be uplifted and eroded into sediment instead of melted
- The rock cycle is driven by Earth's internal heat and external processes, including weathering and erosion

Focus Questions 2.2


- Describe the two criteria used to classify igneous rocks.
- Explain how the rate of cooling influences the crystal size of minerals.

- Igneous rocks form when magma or lava cools and crystallizes
 - Magma is generated most commonly by melting in the mantle, but some is generated by melting the crust
 - Rises because it is less dense than surrounding rock
 - Magma that reaches Earth's surface is known as lava

- Solidification of lava at Earth's surface creates extrusive or volcanic igneous rocks
 - Most volcanic eruptions are not violent
 - Abundant in the northwest (Cascades, Columbia Plateau)
 - Many oceanic islands are volcanic (Hawaii)

- Most magma never reaches the surface, and instead solidifies as intrusive or plutonic igneous rocks
- Only exposed at the surface by uplift and erosion
 - Mount Washington (New Hampshire)
 - Stone Mountain (Georgia)
 - Mount Rushmore and the Black Hills (South Dakota)
 - Yosemite National Park (California)

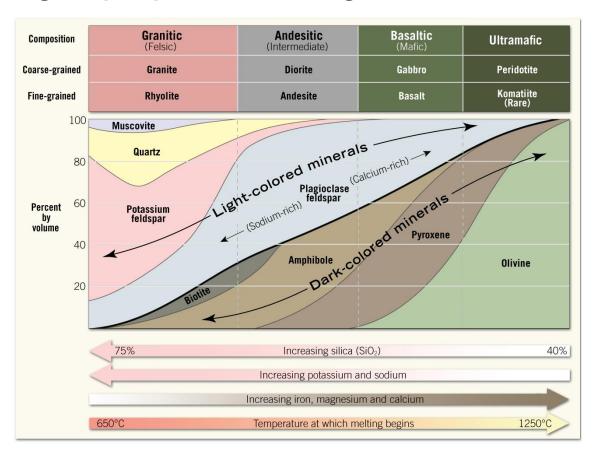
From Magma to Crystalline Rock

- Magma contains ions including silicon and oxygen, gas (water vapor) confined by pressure, and some solid crystals
- Crystallization occurs as mobile ions arrange into orderly patterns during cooling
- As cooling continues, more ions are added to the crystals until all of the liquid becomes a solid mass of interlocking crystals

From Magma to Crystalline Rock

- Rate of cooling strongly influences crystal size
 - Slow cooling results in fewer, larger crystals
 - Quick cooling results in a large number of small intergrown crystals
 - Instantaneous cooling ("quenching") results in randomly distributed atoms, no crystal growth, and formation of volcanic glass
 - Volcanic ash is actually tiny shards of glass
- Crystallization is also influenced by magma composition and dissolved gas

Igneous Compositions


- Igneous rocks are mainly composed of silicate minerals
- Silicon and oxygen + Al, Ca, Na, K, Mg, and Fe make up 98% of most magmas
- Also includes small amounts of trace elements
 - Titanium, manganese, gold, silver, uranium, etc.
- During crystallization, these elements combine to form two major groups of silicate minerals

Igneous Compositions

- Dark silicates are rich in iron and/or magnesium and relatively low in silica
 - Olivine, pyroxene, amphibole, biotite mica
- Light silicates contain greater amounts of potassium, sodium and calcium and are richer in silica
 - Quartz, muscovite mica, feldspars
 - Feldspars are most abundant mineral group
 - 40% of most igneous rocks

Igneous Compositions

 Igneous rocks can be divided into broad groups according to proportions of light and dark minerals

- Granitic (felsic) rocks
 - Igneous rocks of granitic composition are made up almost entirely of light-colored silicates
 - Quartz and potassium feldspar
 - Felsic = feldspar + silica
 - Most contain ~10% dark silicate minerals
 - Biotite mica, amphibole
 - ~70% silica
 - Major constituent of continental crust

- Basaltic (*mafic*) rocks
 - Contain at least 45% dark silicate minerals and Ca-rich plagioclase but no quartz
 - Mafic = magnesium + ferrum (iron)
 - Darker and more dense than granitic rocks because of iron content

- Andesitic (*intermediate*) rocks
 - Andesitic falls between granitic and basaltic composition
 - Mixture of both light- and dark-colored minerals
 - Contain at least 25% dark-silicate minerals
 - Amphibole and plagioclase feldspar
 - Associated with volcanic activity at continental margins

- Ultramafic rocks
 - Contain mostly dark-colored minerals
 - Olivine and pyroxene
 - For example, peridotite and dunite
 - Rare at Earth's surface
 - Main constituent of upper mantle

- The texture of a rock is described based on the size, shape, and arrangement of mineral grains
- Texture can be used to make inferences about a rock's origin, for example:
 - Large crystals indicate slow cooling
 - Slow cooling is common in magma chambers deep in the crust
 - A rock with large crystals probably formed deep in the crust

Fine-grained texture

- Cooled rapidly at the surface or in small masses in the upper crust
- Individual crystals are too small to see with the naked eye

Coarse-grained texture

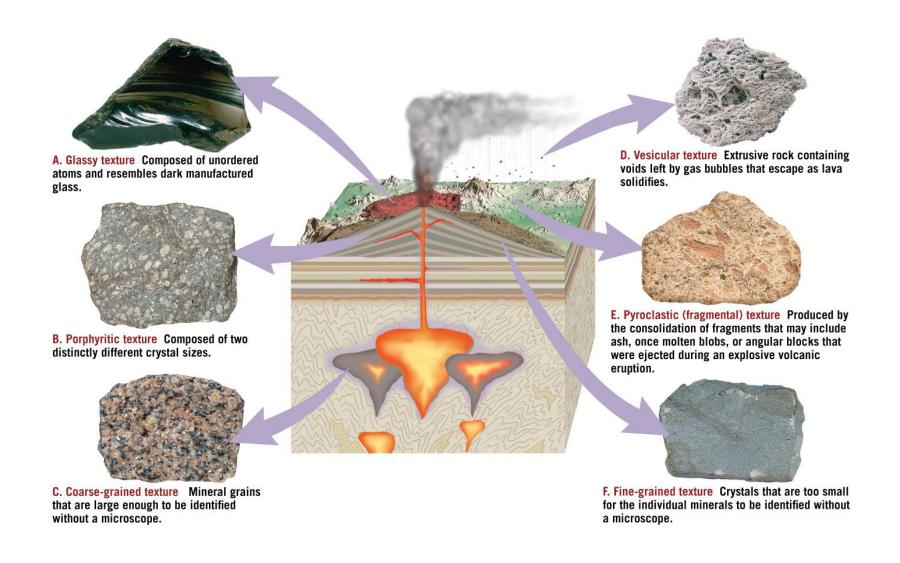
- Solidified at depth while insulated by surrounding rock
- Masses of interlocking crystals roughly the same size (large enough to be seen by the naked eye)

Porphyritic texture

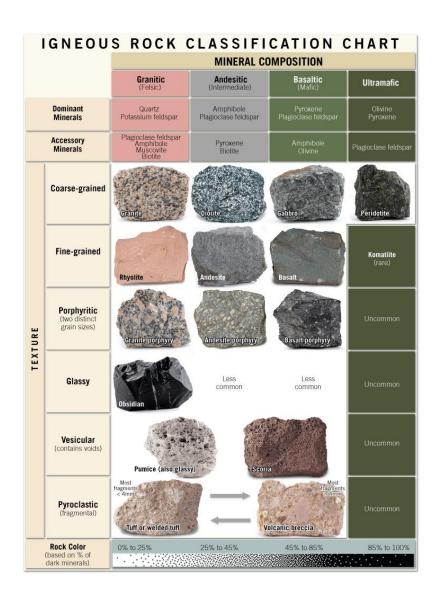
- Different minerals crystallize under different temperature and pressure conditions
- One mineral can reach a large size before other minerals start to form
- Large crystals (phenocrysts) in a matrix of smaller crystals (groundmass)

Vesicular texture

- Exhibits voids left by gas bubbles that remained when lava solidified
- Form in upper zone of a lava flow

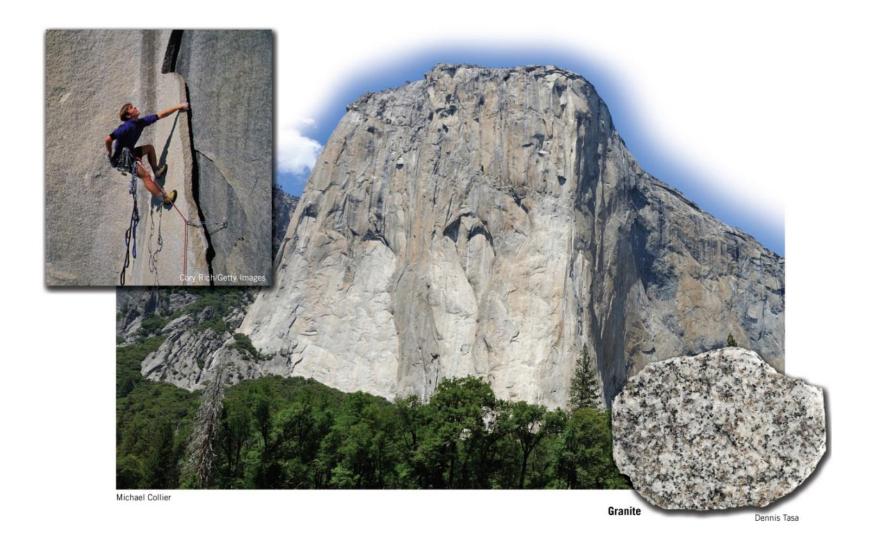


Glassy texture


- Develops when rocks cool rapidly
- lons freeze in place before they can arrange themselves in an orderly crystalline structure

Pyroclastic (fragmental) texture

- Composed of individual rock fragments ejected during explosive volcanic eruptions
- Particles could be very fine ash, molten blobs, or large angular blocks



- Igneous rocks are classified by texture and mineral composition
 - Texture results from cooling history
 - Mineral composition derives from parent magma and environment of crystallization

Granite

- Coarse-grained
- Forms when magma solidified slowly at depth
- Uplifted during mountain building

Rhyolite

- Extrusive fine-grained equivalent of granite
- Light-colored silicates, usually buff, pink, or light grey
- Frequently contains voids and fragments of volcanic glass
- Cooled rapidly at Earth's surface

Obsidian

- Natural volcanic glass
- Dark in color (from metallic ions),
 but felsic composition

Pumice

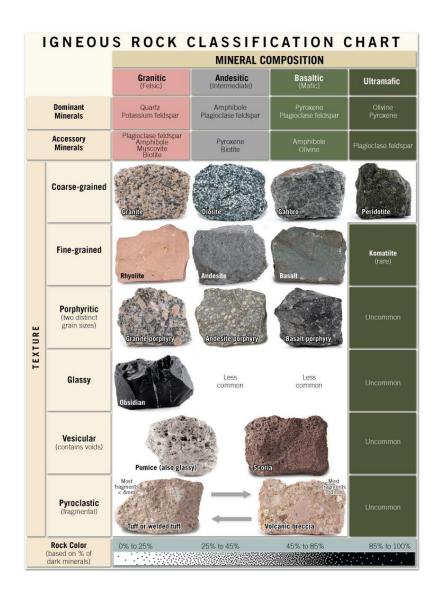
- Vesicular volcanic glass
- Gas escape from molten lava forms a frothy, gray rock
- Many pieces float in water because of vesicles

Andesite

- Medium-gray extrusive igneous rock
- Fine-grained or porphyritic with phenocrysts of plagioclase feldspar or amphibole
- Major constituent of volcanos along the Pacific Rim
 - Andes Mountains
 - Cascade Range

Diorite

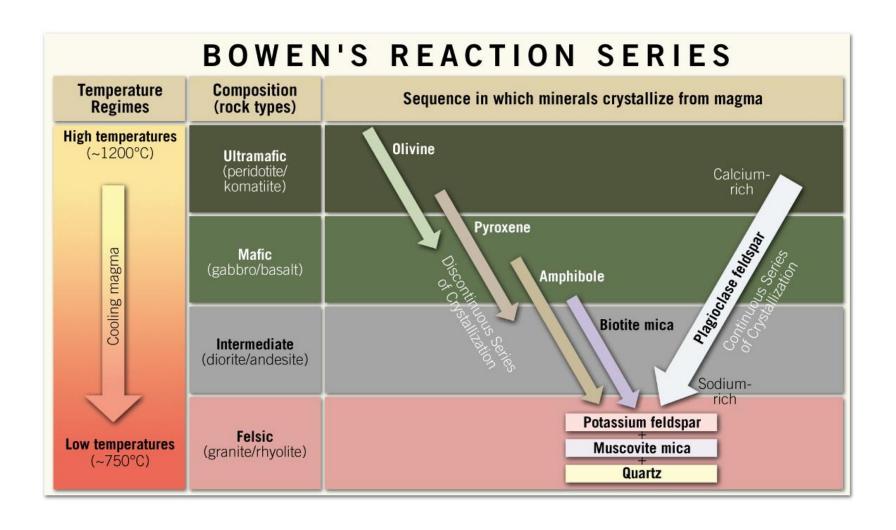
- Coarse-grained intrusive equivalent of andesite
- Few or no visible quartz crystals


Basalt

- Most common extrusive igneous rock
- Dark green to black, fine-grained
- Contains pyroxene, olivine, and plagioclase feldspar
- Relatively common at Earth's surface
 - Volcanic islands (e.g., Hawaii, Iceland)
 - Upper layers of the oceanic crust
 - Central Oregon and Washington

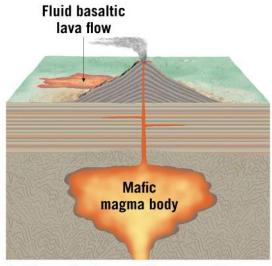
Gabbro

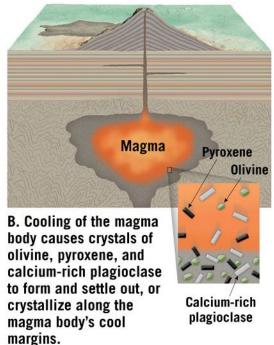
- Coarse-grained intrusive equivalent of basalt
- Not commonly exposed at Earth's surface
- Significant component of oceanic crust



How Different Igneous Rocks Form

- Magma can evolve
 - Different rock types can be generated from the same melt
- Bowen's reaction series describes which minerals solidify at specific temperatures
 - First to crystallize is olivine, then pyroxene and plagioclase
 - Amphibole and biotite at intermediate temperatures
 - Muscovite and potassium feldspar during late cooling
 - Quartz is last to solidify
- Minerals that form in the same temperature range tend to be associated in the same igneous rocks


How Different Igneous Rocks Form


How Different Igneous Rocks Form

- Magmatic differentiation is the formation of one or more secondary magmas from a single parent magma
 - Explains diversity of igneous rocks
 - Magma composition continually changes during cooling
 - As crystals form, certain elements are selectively removed, resulting in a depleted magma
 - Crystal settling occurs when dense minerals sink to the bottom of a magma chamber

Igneous Rocks: "Formed by Fire"

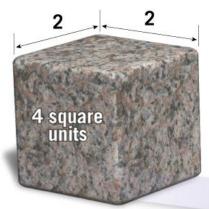
A. Magma having a mafic composition erupts fluid basaltic lavas.

Explosive eruption of silica-rich magma

Solid rock

Magma

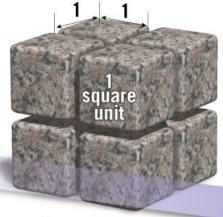
C. The remaining melt will be enriched with silica, and should a subsequent eruption occur, the rocks generated will be more silica-rich and closer to the felsic end of the compositional range than the initial magma.


Focus Questions 2.3

- Define weathering.
- Distinguish between the two main categories of weathering.

Weathering of Rocks to Form Sediment

- Weathering is the transformation of a rock to reach equilibrium with its environment
 - Natural response of materials to a new environment
 - Two basic categories: mechanical and chemical
 - Generally occur simultaneously
 - Erosion transports weathered rock


- Mechanical weathering is the process of breaking down rocks into smaller pieces
 - Each piece retains the same physical properties of the original material
 - Increases surface area available for chemical weathering

4 square units 3 6 sides 3 1 cube 5

24 square units

As mechanical weathering breaks rock into smaller pieces, more surface area is exposed to chemical weathering.

1 square unit3

6 sides 3

8 cubes 5

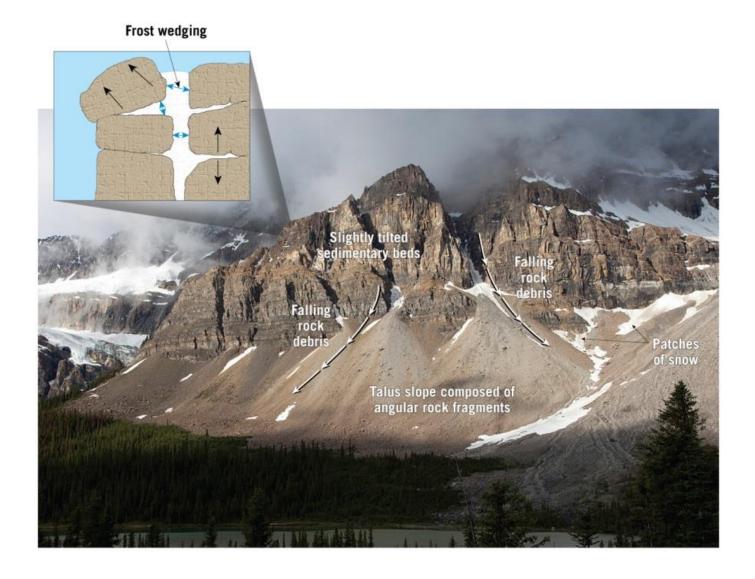
48 square units

.25 square unit 3 6 sides 3

64 cubes 5

96 square units

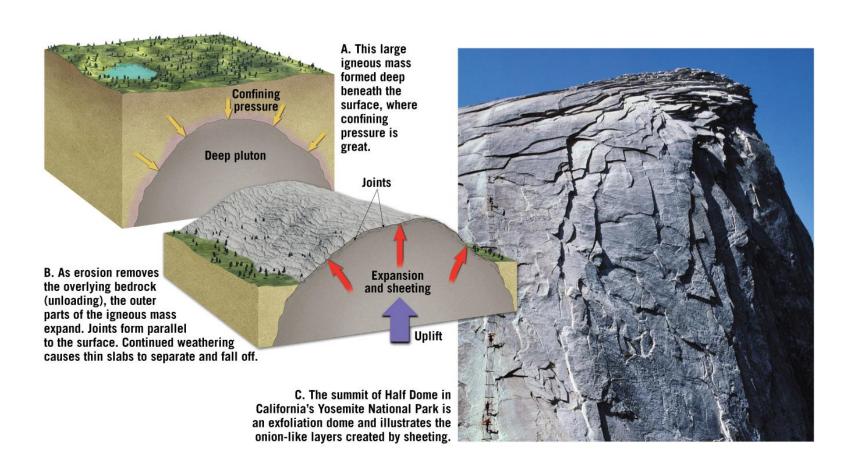
Frost wedging

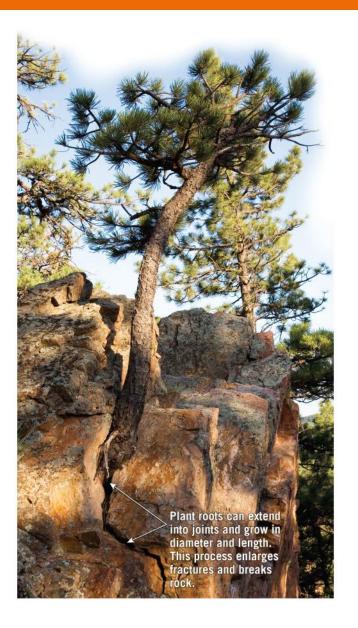

– Ice expands ~9% when it freezes

Traditional explanation: water fills cracks in rocks and expands

 Recent research: lenses of ice grow within cracks and pore spaces of rock until rock is weakened and

fractures




Salt Crystal Growth

- Sea spray or salty groundwater evaporate in rock's crevices and pore spaces
- Salt crystals grow larger and weaken the rock by pushing apart surrounding grains or enlarging tiny cracks
- Common on rocky shorelines and in arid regions

- Sheeting occurs when concentric slabs of intrusive igneous rock break loose
 - Removal of overlying rock reduces pressure and outer layers expand and separate
 - Continued weathering results in exfoliation domes

- Biological activity also breaks rocks apart
 - Plant roots grow into cracks and wedge the rock apart
 - Burrowing animals expose rock to increased weathering
 - Decaying organisms produce acids, which contribute to chemical weathering

Chemical Weathering

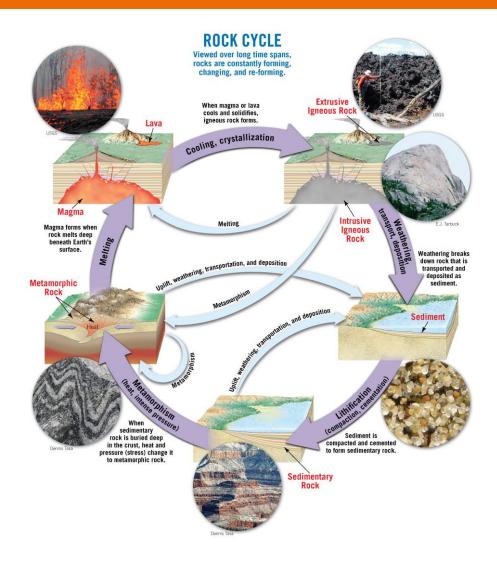
- Chemical weathering alters the internal structure of minerals
 - Elements are removed or added
 - Original rock is transformed into new stable material
 - Makes outer portions of some rocks more susceptible to mechanical weathering
- Water is most important agent of chemical weathering
 - Oxygen dissolved in water causes oxidation
 - Carbon dioxide dissolved in water is carbonic acid
 - Feldspar minerals are broken down into clay minerals
 - Silica is carried away by ground water
- Quartz is very resistant to chemical weathering

Products of Chemical Weathering

- Chemical weathering of a silicate rock by carbonic acid
 - Feldspar minerals are broken down into clay minerals
 - Silica is carried away by ground water
 - Quartz is very resistant to chemical weathering

Products of Chemical Weathering

Table 2.1 Products of Weathering				
Mineral	Residual Products	Material in Solution		
Quartz	Quartz grains	Silica		
Feldspars	Clay minerals	Silica, K+, Na+, Ca ²⁺		
Amphibole	Clay minerals Iron oxides	Silica, Ca ²⁺ , Mg ²⁺		
Olivine	Iron oxides	Silica, Mg ²⁺		


Focus Questions 2.4

- List and describe the different categories of sedimentary rocks.
- Discuss the processes that change sediment into sedimentary rock.

Sedimentary Rocks: Compacted and Cemented Sediment

- Sedimentary rocks form after weathering breaks rocks down, gravity and erosional agents transport and deposit the sediment, and the sediment becomes lithified
- Most sedimentary rock is deposited by solid material settling out of a fluid
- Sedimentary rocks make up ~5% of Earth's outer 10 miles, but account for 75% of all continental rock outcrops
 - Used to reconstruct details about Earth's history
 - Economically important
 - Coal, petroleum and natural gas, metals, fertilizer, construction materials

Sedimentary Rocks: Compacted and Cemented Sediment

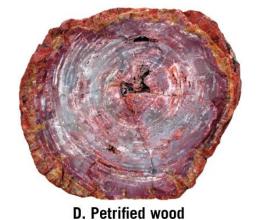

- Sedimentary rocks are classified in two groups
 - Detrital sedimentary rocks form from solid particles weathered from other rocks
 - Chemical and biochemical sedimentary form from ions carried in solution

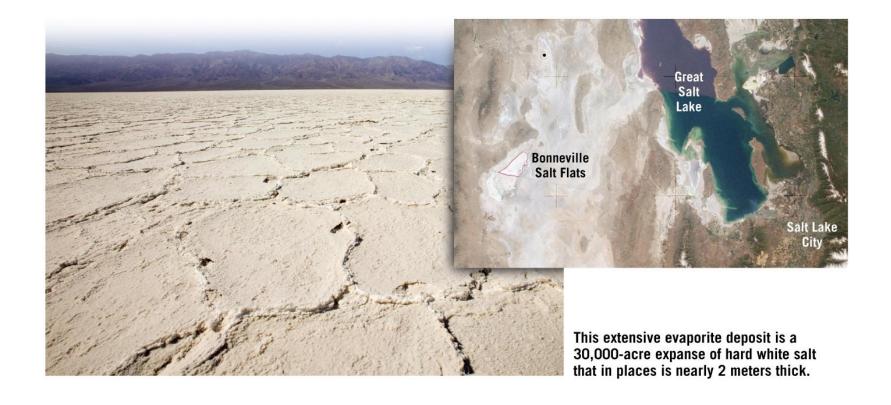
- Detrital sedimentary rocks
 - Contain a wide variety of minerals and rock fragments
 - Clay and quartz are most common
 - Distinguished by particle size
 - Also useful for determining environment of deposition
 - Higher energy carries larger particles
 - Mineral composition is also used to classify detrital sedimentary rocks

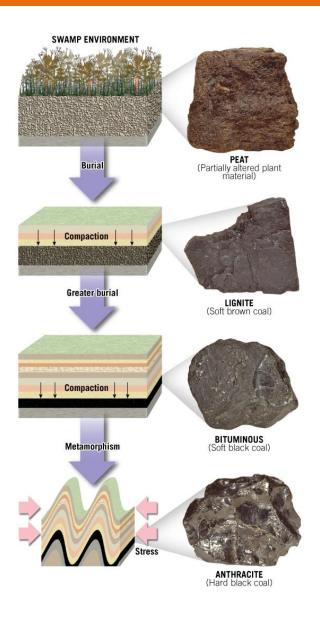
Detrital Sedimentary Rocks					
Particle Size	Sediment Name	Rock Name			
Coarse (over 2 mm)	Gravel (Rounded particles)	Conglomerate			
	Gravel (Angular particles)	Breccia			
Medium (1/16 to 2 mm)	Sand	Sandstone			
		Arkose*			
Fine (1/16 to 1/256 mm)	Silt	Siltstone			
Very fine (less than 1/256 mm)	Clay	Shale or Mudstone			

^{*}If abundant feldspar is present the rock is called arkose.

- Chemical sedimentary rocks
 - Water carries ions in solution
 - Solid material precipitates to form chemical sediments
 - E.g. salt left behind when saltwater evaporates
 - Materials precipitated by organisms are known as biochemical sediments
 - E.g. shells and hard parts
- Limestone is composed of calcite (CaCO₃)
 - Nearly 90% is formed by organisms

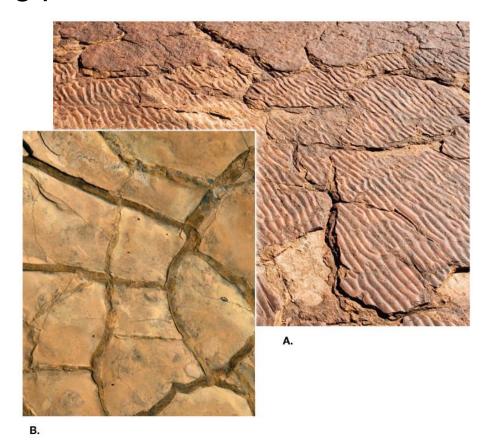

- Examples of chemical sedimentary rocks:
 - Coquina: loosely cemented shell fragments
 - Chalk: hard parts of microscopic organisms
 - Travertine: inorganic limestone that forms in caves
 - Chert, flint, jasper, and agate: microcrystalline quartz
 - Salt and gypsum form in evaporite deposits
 - Coal consists mostly of organic matter





	1		T.	
Compo	sition	Texture	Roc	k Name
	Fine to coarse crystalline	Crystalline Limestone		
		Very fine-grained crystals	Microcrystalline Limestone	
Calcite, CaCO ₃	Fine to coarse crystalline	Travertine		
	B i o c	Visible shells and shell fragments loosely cemented	Coquina	
	e m i L c i a m l e	Various size shells cemented with calcite cement	Fossiliferous Limestone	
	s t o n e	Microscopic shells and clay	Chalk	
Qua SiC		Very fine crystalline	Chert (light colored)	
Gypsum CaSO ₄ •2H ₂ O		Fine to coarse crystalline	Rock Gypsum	
Halite , NaCl		Fine to coarse crystalline	Rock Salt	
Altered fragm organic	ents	Fine-grained	Bituminous Coal	

Lithification of Sediment


- Lithification is the process by which sediment is transformed into sedimentary rock
 - Compaction occurs when grains are pressed closer together so that pore space is reduced
 - Weight of accumulated sediment
 - Most significant in fine-grained rocks
 - Cementation occurs when water containing dissolved minerals moves through pores
 - Cement precipitates, fills pores, and joins particles together
 - Calcite, silica, and iron oxide are common cements
 - Significant in coarse-grained rocks

Features of Sedimentary Rocks

- Sedimentary rocks form in layers called strata or beds
 - Characteristic of sedimentary rocks
 - Thickness ranges from microscopic to tens of meters
 - Bedding planes ark the end of one episode of sedimentation and the beginning of another
- Fossils are traces or remains of life found in some sedimentary rocks
 - Important clues of ancient environment
 - Can be used to match up rocks of the same age found in different places

Features of Sedimentary Rocks

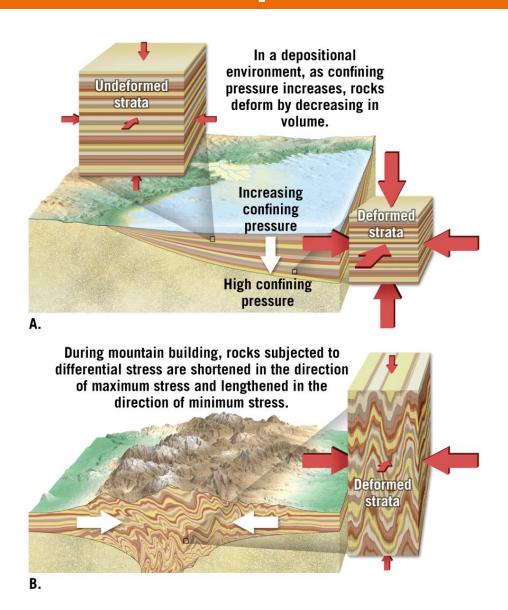
Sedimentary rocks provide evidence for deciphering past environments

Focus Questions 2.5

- Define metamorphism.
- Explain how metamorphic rocks form.
- Describe the agents of metamorphism.

- Metamorphic rocks are produced when preexisting parent rock is transformed
 - Parent rock can be igneous, sedimentary, or metamorphic
- Metamorphism occurs when parent rock is subjected to a different physical or chemical environment
 - Elevated temperature and pressure
 - Changes mineralogy, texture, and sometimes chemical composition
 - Equilibrium with new environment
- Metamorphism progresses incrementally
 - Low-grade (slight changes) to high-grade (substantial changes)

- Most metamorphism occurs in one of two settings:
 - Contact metamorphism
 - Rock temperature increases because of intruding magma
 - Regional metamorphism
 - Pressure and high temperature during mountain building

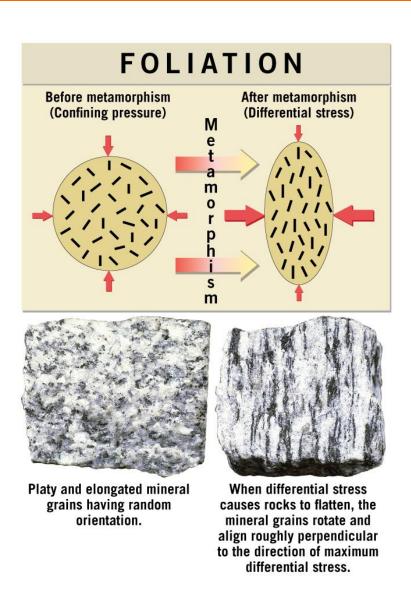

What Drives Metamorphism?

- Agents of metamorphism
 - Heat (from intrusion of magma or burial)
 - Chemical reactions and recrystallization of new minerals
 - Confining pressure (equal in all directions because of burial)
 - Compaction and recrystallization of new minerals

What Drives Metamorphism?

- Differential stress (greater in one direction because of mountain building)
 - Deformation and development of metamorphic textures
 - Rocks can react by breaking (brittle) or bending (ductile) depending on temperature
- Chemically active fluids (hydrothermal fluid rich in ions)
 - Catalyze recrystallization reactions
 - Can dissolve a mineral from one area and precipitate it in another
 - Can change chemical composition of surrounding rock

What Drives Metamorphism

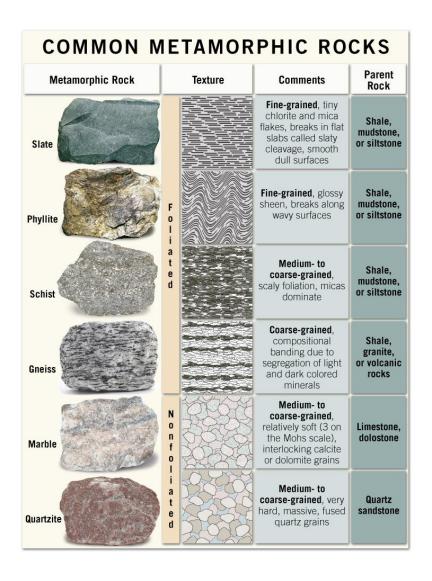


Metamorphic Textures

- Metamorphism can change the texture of a rock
 - Low-grade metamorphism makes rocks compact and more dense
 - High-grade metamorphism causes recrystallization and growth of visible crystals

Metamorphic Textures

 Foliation is the development of a flat arrangement of mineral grains or structural features


Metamorphic Textures

- Foliation is characteristic of regional metamorphism
- Driven by compressional stress
 - Causes mineral grains to develop parallel alignment
- Includes:
 - Parallel alignment of micas
 - Parallel alignment of flattened pebbles
 - Separation of light and dark minerals
 - Development of rock cleavage

Metamorphic Rocks Textures

 Nonfoliated rocks occur when deformation is minimal and parent rock is composed largely of stable minerals

Common Metamorphic Rocks


Common Metamorphic Rocks

- Common foliated metamorphic rocks:
 - Slate has characteristic rock cleavage
 - From metamorphism of shale or volcanic ash
 - Phyllite has larger mineral grains than slate, which give it a glossy sheen and wavy surface
 - Schist is formed by regional metamorphism of shale
 - Gneiss is a banded metamorphic rock that may have intricate folds

Common Metamorphic Rocks

- Common nonfoliated metamorphic rocks:
 - Marble is a coarse crystalline rock
 - From metamorphism of limestone
 - Quartzite is very hard because of fused quartz grains
 - From metamorphosed quartz sandstone

